ABC Canadian Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams

Alkalinity, as mg
$$CaCO_3/L = \frac{(Titrant\ Volume, mL)(Acid\ Normality)(50,000)}{Sample\ Volume, mL}$$

$$Amps = \frac{Volts}{Ohms}$$

Area of Circle = (0.785) (Diameter²) or (Π) (Radius²)

Area of Cone (lateral area) = (Π) (Radius) $\sqrt{\text{Radius}^2 + \text{Height}^2}$

Area of Cone (total surface area) = (Π) (Radius) (Radius + $\sqrt{\text{Radius}^2 + \text{Height}^2})$

Area of Cylinder (total outside surface area) = [Surface Area of End #1] + [Surface Area of End #2] + $[(\Pi) \text{ (Diameter) (Height or Depth)}]$

Area of Rectangle = (Length) (Width)

Area of a Right Triangle =
$$\frac{\text{(Base)(Height)}}{2}$$

Average (arithmetic mean) =
$$\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The *n*th root of the product of *n* numbers

Biochemical Oxygen Demand (unseeded), in $mg/L = \underline{\text{(Initial DO, mg/L)} - \text{(Final DO, mg/L)}}$ $\underline{\text{Sample Volume, mL}}$ Final Diluted Volume, mL

Chemical Feed Pump Setting, % Stroke = $\frac{\text{(Desired Flow)}(100\%)}{\text{Maximum Flow}}$

Chemical Feed Rate, mL/min =
$$\frac{(Flow, m^3/day)(Dose, mg/L)}{(Chemical Feed Density, g/cm^3)(Active Chemical, \%)(1,440)}$$

Circumference of Circle = (Π) (Diameter)

Composite Sample Single Portion = $\frac{\text{(Instantaneous Flow) (Total Sample Volume)}}{\text{(Number of Portions) (Average Flow)}}$

Degrees Celsius = [(Degrees Fahrenheit - 32) (5/9)] or
$$\frac{\binom{\circ}{F} - 32}{1.8}$$

Degrees Fahrenheit = [(Degrees Celsius) (9/5) + 32] or [(Degrees Celsius) (1.8) + 32]

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$
 Note: Units must be compatible.

Electromotive Force (E.M.F), volts = (Current, amps) (Resistance, ohms) or E = IR Feed Rate, $kg/day = \frac{(Dosage, mg/L)(Flow Rate, m^3/day)}{(Purity, Decimal Percentage) (1,000)}$ Filter Backwash Rate, $L/m^2 sec = \frac{Flow, L/sec}{Filter Area, m^2}$ Filter Backwash Rise Rate, $cm/min = \frac{Water Rise, cm}{Time, minute}$ Filter Yield, $kg/m^2 hr = \frac{\text{(Solids Concentration, \%)(Sludge Feed Rate, L/hr)(10)}}{\text{(Surface Area of Filter, m}^2)}$ Flow Rate, m³/sec = (Area, m²) (Velocity, m/sec) or Q = AV where: Q = flow rate, A = area, V= velocity Food/Microorganism Ratio = $\frac{BOD_5, kg/day}{MLVSS, kg}$ Force, newtons = (Pressure, pascals) (Area, m^2) Litres/Capita/Day = Volume of Wastewate r Produced, L/day **Population** Hardness, as mg $CaCO_3/L = \frac{(Titrant\ Volume, mL)(1,000)}{Sample\ Volume, mL}$ Only when the titration factor is 1.00 of EDTA Horsepower, Brake (bhp) = $\frac{\text{(Flow, gpm) (Head, ft)}}{\text{(3,960) (Decimal Pump Efficiency)}}$ (Flow, gpm) (Head, ft) Horsepower, Motor (mhp) = $\frac{(3.960) (\text{Decimal Pump Efficiency}) (\text{Decimal Motor Efficiency})}{(3.960) (\text{Decimal Pump Efficiency}) (\text{Decimal Motor Efficiency})}$ Horsepower, Water (whp) = $\frac{(Flow, gpm) (Head, ft)}{(Flow, gpm) (Head, ft)}$ 3.960 Hydraulic Loading Rate, m^3/m^2 day = $\frac{\text{Total Flow Applied, m}^3/\text{day}}{\text{Area, m}^2}$ Leakage, Lpd = $\frac{\text{Volume, L}}{\text{Time, days}}$ Mass, kg = $\frac{\text{(Volume, m}^3)(\text{Concentration, mg/L})}{\text{1000}}$ Mass Flux, $kg/day = \frac{(Volume, m^3 / day)(Concentration, mg/L)}{}$ Aeration Tank TSS, kg + Clarifier TSS, kg Mean Cell Residence Time (MCRT)

TSS Wasted, kg/day + Effluent TSS, kg/day

or Solids Retention Time (SRT), days

Slope, $\% = \frac{\text{Drop or Rise}}{\text{Distance}} \times 100$

Sludge Density Index =
$$\frac{100}{\text{SVI}}$$

$$Sludge\ Volume\ Index,\ mL/g = \ \frac{(SSV_{30}\,,\,mL/L)\,(1,\!000\ mg/g)}{MLSS,\,mg/L}$$

Solids, mg/L =
$$\frac{(Dry Solids, grams) (1,000,000)}{Sample Volume, mL}$$

Solids Concentration,
$$mg/L = \frac{Weight, mg}{Volume, L}$$

Solids Loading Rate,
$$kg/day/m^2 = \frac{Solids Applied, kg/day}{Surface Area, m^2}$$

Solids Retention Time (SRT): see Mean Cell Residence Time (MCRT)

Specific Gravity =
$$\frac{Specific Weight of Substance, kg/L}{Specific Weight of Water, kg/L}$$

Specific Oxygen Uptake Rate/Respiration Rate,
$$(mg/g)/hr = \frac{OUR, mg/L/min(60 min)}{MLVSS, g/L(1 hr)}$$

Surface Loading Rate or Surface Overflow Rate,
$$Lpd/m^2 = \frac{Flow, Lpd}{Area, m^2}$$

Three Normal Equation =
$$(N_1 \times V_1) + (N_2 \times V_2) = (N_3 \times V_3)$$
, where $V_1 + V_2 = V_3$

Two Normal Equation = N1 x $V_1 = N_2 \times V_2$, where N = concentration (normality), V = volume or flow

Velocity, m/second =
$$\frac{\text{Flow Rate, m}^3/\text{sec}}{\text{Area, m}^2}$$
 or $\frac{\text{Distance, m}}{\text{Time, second}}$

Volatile Solids,
$$\% = \frac{(Dry Solids, g - Fixed Solids, g) (100)}{Dry Solids, g}$$

Volume of Cone = (1/3) (0.785) (Diameter²) (Height)

Volume of Cylinder = (0.785) (Diameter²) (Height)

Volume of Rectangular Tank = (Length) (Width) (Height)

Waste Milliequivalent = (mL) (Normality)

Watts (DC circuit) = (Volts) (Amps)

Watts (AC circuit) = (Volts) (Amps) (Power Factor)

Weir Overflow Rate,
$$Lpd/m = \frac{Flow, Lpd}{Weir Length, m}$$

Wire-to-Water Efficiency,
$$\% = \frac{\text{Water Horsepower, HP}}{\text{Power Input, HP or Motor HP}} \times 100$$

(3,960) (Electrical Demand, kilowatts)

Conversion Factors:

1 acre = 4046.9 square metres 1 horsepower = 0.746 kW or 33,000 foot-pounds/minute

1 cubic metre = 1,000 kilograms 1 metre head = 9.8 kPa 1 cubic metre = 1,000 litres 1 pound = 0.454 kilograms

1 cubic metre = 219.97 Imperial gallons 1 cubic metre per second = 19.01 MIGD 1 square metre = 1.19 square yards

1 foot = 0.305 metre 1% = 10,000 mg/L 1 gallon = 3.79 litres Π or pi = 3.14

1 hectare = 10,000 square metres

Population Equivalent, hydraulic = 378.5 litres/person/day Population Equivalent, organic = 0.077 kg BOD/person/day

Abbreviations:

BOD	biochemical oxygen demand	MLVSS	mixed liquor volatile suspended
CBOD	carbonaceous biochemical oxygen		solid
	demand	OCR	oxygen consumption rate
cm	centimetre	ORP	oxygen reduction potential
COD	chemical oxygen demand	OUR	oxygen uptake rate
DO	dissolved oxygen	PE	population equivalent
F/M ratio	food to microorganism ratio	ppb	parts per billion
g	grams	ppm	parts per million
kPa	kilopascals	Q	flow
kg	kilograms	RAS	return activated sludge
kW	kilowatt	RBC	rotating biological contactor
L	litres	SDI	sludge density index
Lpd	litres per day	SRT	solids retention time
Lpm	litres per minute	SS	settleable solids
m	metres	SSV_{30}	settled sludge volume 30 minute
MCRT	mean cell residence time	SVI	sludge volume index
mg/L	milligrams per litre	TOC	total organic carbon
MIGD	million Imperial gallons per day	TS	total solids
mL	milliliter	TSS	total suspended solids
MLD	million litres per day	VS	volatile solids
MLSS	mixed liquor suspended solids	WAS	waste activated sludge